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APPLICATION OF VARIATIONAL EQUATION OF f4OTION

TO TqvE NONLINEAR VIBRATION ANALYSIS

OF

'OrOrENEOITS AND LAYERED PLATES AND SHELLS 1

Yi-Yuan Yu2

ABSTRACT

An integrated procedure is presented for applying

the variational equation of motion to the approximate

analysis of nonlinear vibrations of homogeieous and
layered plates and shells involving large deflections.

The procedure consists of a qequence of variational

approximations. The first of these involves an approxi-
mation in the thickriess direction and yields -. system of

equations of motion and boundary conditions !-r the plate
or shell. Subsequent variational approximati 'ns with re-

spect to the remtlning space coordinates and *ime, wher-
evei needed, lead to a solution to the nonlir-ar --iration

problem. The procedure is illustrated by a study of the
nonlinear free vibrationx of homogeneous and s-dwich cy-
lindrical shells, and it appears to be applicable to still

many other homogeneous and composite elastic :i.,tems.

1This research was supported by the United States Air
rorce under Contract Ar 49(638)-453 monitored by the
Air Force Office of Scientific Research.

2Professor, Department of mechanical Engineering,
Polytechnic Institute of Brooklyn.
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INTRODUCTION

In soiving certain equilibrium and vibration problems

in the linear or nonlinear theory of elasticity, two dis-

tinct and unrelated steps are often taken. In the case of

a plate or shell problem, for instance, an approximate

system of equations that governs the problem is usually de-

rived first by the use of one of a wide variety of avail-

able methods. Then, when the system of equations deduced

cannot be solved exactlyo a wide variety of methods is

again available for obtaining an approximate solution of

the equations. The method used for deriving the approxi-

mate equat'c.ns ar! that used for solving the equations

usually beer no relation t,% each other.

One of the main purposes of this paper is to a-vo-

cate an integrated approximate procedure of solving a

large class of problems in the linear or nonlinear theory

of elasticity, and in particular, problems cf plates and

shells of the layered as well as homogeneou! type of con-

struction, solely on the basis of te_ variatC:n4a equation

of motion. It is an integrated procedure in that the

aforementioned two stepa are no longer unrelated to each

other. In fact, the procedure consists of a sequence of

variational approximations with respect to the space and

time coordinates, carried out in relation to the differ-

ential equations and/or the boundary conditixc;. Although

not much originality can be claimed on the variational

approach, the treatment does make the fullest systematic

use of the variational equation of motion. Besides, it

not only integrates some of the variational approximations

which have been known only as unrelated individual pro-

cedures, but it also reveals the possibility of having

more general variational approximations.

The variational equation of motion in the theory of

elasticity is a direct consequence of Ramilton's principle

and applies to both linear and nonlinear cases. The usual

formulation of the equation, as given in Love'- book r11,
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contaim only the volame and surface integrals with re-

spect to the space coordinates. rn this paper we shall

further include the integration with respect to time an

a necessary part in the formlation of the variational

equation of notion. Without the additional time inte-

gration, variational approrimations can only be perform-

ad with respect to the space coordinates.

In vhat follow the proposed procedure in first out-

lined. Then, as illustrations and as problems of interest

by themselves, aproximate systems of nonlinear equations

of notion and bocmdary conditions of he mogenems and sand-

wich cylindrical shells are derived and subsequently solved

for the case& of aialy syetrical vibratio~m of closed

shells with immovable hinged dgem. Result* for the non-

linear frequencies are finally discussed.
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henteqatd Variational Apiroach

On the basis of the linear or nonlinear variational

equation of notion in a form as has just been specified,

the solutions to a large class of problems in the theory

of elasticity, and in particular problems of homogeneous

and layered plates and shells, may be obtained by carry-

ing out a sequence of successive variational approximations.

In the first of these approximations, and in the case of

plate and shell problems, for instance, the dependence of

the displacements on the thickness coordinate is assumed.

and integration is carried out with respect to this co-

ordinate. T*-. first variational approximation thus consti-
tutes essentially the process of & rivinq plate or shell

equations or other approximate equations. nowever, even

in such a process in tMis first step, the varii.tional eaation

of motion does not appear to have been fully msde use of

before, since, until recently, only the volume integral,
and only that in tne linear variational equati-n of motion

(without the time integration), has ben emplo-'r.d in the

derivation of linear differential equations of motion of

plates [2-71 and shells !C. The surface integral in

either the linear or nonlinear Variational equation of .k

motion is believed to have been used for the first time

in the recent derivation of the appropriate boundary con-
ditions in reference 9 for sandwich plates. AIJuaugh the

boundary conditions (as well as the equations of motion)

may also be derived by other means, the integrated treatt.

ment on the basis of the variation equation of motion has

the advantage of being simple and straightforward, and it

permits the surface traction terms that appear in the

boundary conditions to be incorporated tmmediately in the

equations of otion, vhich is particularly desirable in

nonlinear cases.

Sometimes even the approximate system of differential

equations and boundary conditions cannot be solved exactly

for a given equilibrivm nr vibration problem. A well-known

apmoximate procedure named usually after Calerkin may often
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be used, in which displacements are assumed such as to
satisfy exactli the boundary conditions but not the
differential eqradions. An alternative approximate pro-
cedure is that due to Treffta [101 in which the assuns4
displacements satisfy exactly the differential equations
but not the boundary conditions. A natural goneraliza-
tics of the two apars to be one in which the assummed
displacements satisfy exactly some of the differential
equations and boundary conditions and are tnade to satis-
fy the remaining differential eqauations and boundary
conditions approximately in the variational sense. The
use of the generalized procedure remains to be explored.
but. togethei viO) its above two variants, the procedure
clearly may be considered. 4;id iy% effect is, a second
'variational approximation in the solution of sn elasticity
problem based on the variational equation of 4otion. In
equilibrium problem this is also the final variational
approximation that is roeded.

For problem of vibration. and, in partiumlar. non-
linear vibration, a third and final variatioral aivinz~i-

mation with respect to time is often useful. It is this
last step that needs the Integration with r..pact to time
,which has been included as part of the variational e-
quation of motion. The approximation consists of essen-
tially another application of the Galerlrin procedure.
The successful use of ! t In solving ntonline4sl zibration
problems involving single-degree-of-fredo systems has
been demonstrated by Rlotter (il1. who prefers to call it
the Rita Procedure. in reference It it is also mentioned

that the same procedure may be applied to nonlinear vibra-
tion analysis of tw-degrees-of-fredo systems. Further
applicability of the procedure to composite continuous
systems has bee demonstrated In refernc 9 where non-
linear vibrations of sandwich plates are discussed.

Thus. by the use of the procedure Just outlined, we
are *nled to derive Ohe approximate solution to an
elasticity problem from a unified point of view and in an
is~tegrated manner, solely on the basis of the variational
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equation, of motion, although much that Is involved may
have been wil-kotim as Isolated individual procedures.
in the remaiming part of this paper, the nonlinear vi-
brations of hooen R e&, sandwich cylindrical shells
will be Investigated by ma* of the proposed procedure,
with a system of nonlinear equations of motion Of cylin-
drical shells derived in the first step. The effect of
thickness-Shear deformation is included. The problem may
be considered as an extension of the previous one of non-
linear 'vibration of zandwich plateu (9), and the results
are also reducible to come of the linear results obtained
previously for Ikr meneouS Lr12) and sandwich cylindrical
shells L)
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NIOUNinea UmAV4tios -Of

'~mqenousand Sandich Clircl A hells

Equations of the smadwich cylindrical shell will-be

derived first. ?hose of the h-mogeneous *hell will then

be obtainable as a special limiting case by putting eqal

to sero the thickness of the face layers of the sandwich
shell. The cylindrical coordinates x, a - at and r are

coen to be in the longitudinal, circmferential, and

radial directions, respectively, of the shell, wose

middle surface has the radius a. The middle surface is

further designated as a - o so that the relation between

the two varizles r and a is given by

r=a+ a

In the a-direction the thieknesses of the inner face, core.

and outer face layers of the shell extend froL -h to -%2

-h I to h1 . and hI to h, respectively. In the x-direction

the *hell extends from x - o to x - t . In th". s-4irection
the shell is a closed one in the specific viration prob-

Im to be discussed, but the equations deriv" will also
be applicable to open shells. In particular, the appropri-

ate boundary conditions for an open edge s-constant as
wll as those for xneonstant will be formlated.

In the case of mall deformations and sma, angles
of rotation, smll in a sense such as specified in

Novoshiloves book (131. the variational eqation of motion

in the nonlinear theory of elasticity may be written in
cylindrical coozdinates for the sandwich s*ell as follows:
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In addition, the subscript i = 1, 2,or 3 refers to the

core, inner or outer face layer of the sandwich, axi,

'Xsi, Txri, "' are the stresses. wxi, wi, Wri the angles

of rotation about the x. s, r directions. &i. Psi, Pri

the prescribed surface tractions in these directions. V

refers to the external normal direction, and P; is the

density. While the volume integral in the equation is

to cover the volume of each of the three layers, the

surface integral will cover only those portions of the

surfaces of the layer on which tractions, but not dis-

placements, are prescribed. The equations of motion and

t)'e appropriate boundary conditions of the sandwich cy-

lindrical sliell will be derived from Eq. (1) by carrying

out explicitly the integrax-Aon ,'ith respect to z. We note

here that this will involve exactly the sanme manip-o.ation

as in the corresponding linear case if the zngles of ro-

tation ate independent of z, which as we shail, see will

be assumed.

As in reference 6 the flexural rigiditi-s of the

face layers will be neglected, and the disp..Ments are

assumed in the form

The angles of rotation wx3 and w,, in the cm.& are then

LA. J ='' - _L t L V\

Since the face layers have been taken as membranes, their

angles of rotation about the x- and s-dir*ctions are

LO - V S | |
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The angles of rotation Wri about an axis normal to the

shell middle surface are in general much smaller than

Wxi and wsi about axes lying 'n the surface and are

assumed to be negligible. Among all the angles of ro-

tation, therefore, only wxl depends on z. To simplify

the formulation of the problem, this z-dependence is

suppressed and wxl is assumed to take the simplified

form

Since the original z-dependence of Wx. de-
creases with the thic. ,aess-to-radius ratio of the shell

and wx effects only the nonlinear terms, the simplifying
assumption should not introduce much inacct racy no long
as the shell is thin and the nonlinearity snall. It is

also noted that the assumption will not al 11 r. fcct

symmetrical vibrations which are to be dice. ssed later

in this paper. To summarize, te angles ot rotation now

ta!.e the form

vd w. .w :- .(4)

When Eqs. (3) are substituted in Eq. (1) and inte-
grdtion is carried out with respect to x. the volume

integrals in Eq. (1) yield a Jouble integral, involving

the values of the stresses Trxr, 'rsi. *ri* at the

curved boundarica of the shell. The surface integrals in

Eq. (1) yield three parts after integration. The first

part is the result of integration over the curved stirfaces
of the shell, which is also in the form of a double

integral. When only tractions are prescribed on the

curved surfaces, the two double integrals deduced from

the volume and the surface integrals may be combined, and,
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by equating to zero the coefficients of 6u, 6v, 6w, 6Y, 80

in the resulting integrand, the following stress equations
of motion of the shell are obtained:

"~J A,.4~~ !~li: 6MYi's h r-I- hh

+ - I .-'U ) , ,.

.30

Eqs. (5) contain ' nly the surface t'ractions jw0 ..

but no Jonger th~c boundary vaiues of the stre~see
Irsi, Or'. If the two double ',.Lcrals deduced frem

Eq. (1) are left uncombined, the integrand of , ne will

yield shell equations which still contain the latter

stress values, and that of the other wili yield the

stress or displacement boundary conditions fot the
curved surfaces of the shell.

The remaining two part. derived from the surface

inteqrals of Eq. (1) are result. of integration over

sections across the thic1kness of the shell, and they are

in the form of line_ integrals along the edges x-constant
and s-constant. From these line integrals, the following

appropriate boundary coreitions are obtaineda
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Along an edge x = constant.

h )a? 6)' tAA

.4. cvh V
f

J--h.

Aongj an edge s --constant (for an open A.e1.l),

4.-

try (7)

hen ege s ctnt (orer an openeraltnote e-ined

At Ir

scribed quantitites. Thus i. r* are the pre-

scribed tractions at th. outer boundary 
£ - h.

those at the inner boundary z - -h and Ps, Pr those

across the thicVness of tthe shell. Likewise. u .W, V

are the prescribed values of the shell displacements. 
The

shell-stresses introduced in these equations are defined

by
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-,

, S K ,4

(X A , ) ( , L ,-t

where the irnLegrations are understood to cover i:r.n thick-
ness of the layer.

The stress-strain-.displacement relations of the
shell will next be formulated. tnder th. assumptions of

small wxi and w i and zero mri the strai--displacement c-

lations in the nonlinear theory nf elast.. itir are (13]

S-1 CQI ,*'

r 2.

,11' r 4-

V; V . Is, T 5 - r T-

which yield, by virtue of Eqs. (3).
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r~a6x' Z' V

_ 2)I- h,2t J-
~ 1. z (9)

+ f

where ic-. 'isj. ux2, b2 are given in E-.. (4)

The str,.ss-strain r-'.Lions for the ,aterials i-
z

the various layers are

44i (-5r,

where . zi'/(1"} = t E is Young's

modulus, "i Poisson's ratio, and/4t an additional shear
modulus of the orthotropic core. Successive substitution

of Eqs. (9) in Eqs. (10), (2), and (R) yields
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Al. ;,J, - a " ,rs, ;i-%,LOf1 5 ,-~k( ...I& .' (
j 5. LL 5a.

-~~~~~ a~~ L4t ~~ (1

where

1__1

a PL 2,a

i~i. rfx~(I)% )v~ -;-L4. I-

Idt f x I. (As) 2 A

Ak t

All~- 5A 1 *'

-fJ~j. -
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J

A.,,

T (A
8J~

As those ".- Eqr. (R), the limit3 of tc inLecrations in
Egs.(12) cover the thlcRi- ss cf the layer. In carrying

out these inte-urat-:ons the tr: he o>: "pti,. of

V his been made use of wherev ,r applica,l.

tn t>e expressions ol Oxi and Q, : a !,'ear cccf1cient X
has been - isert:nd in the r.sc- mnnner as ir the linear case
r14, 15, 1 ai. , ay also ic de,;irmir.-d sir,-'larly. T1e

transverse shear fore,.'s Qx2, Os2. ()%3. - ,.re zero be-

cause the face layers have been assumred tn be membranes.

Substitu'tion of F-!s. (11), and (12) in Zqs. (5) leads

immediately to the displacement equations :if motion, al-

though the results will not be recorded heiz.

The system of Eq3. (5), (C). (7), (11), and (12) may

be readily reduced to previous results fc," :impler special

cases. Thus, by letting the radius a equal to infinity,

the nonlinear eguations of saniwich plates of reference 9

are obtained. Cn the othrer f.nd, if the nonlinear effect

is suppresr,.d. we arrive ".t one of the simpler systems of

linear eoua':ions of sa.idwi,: cylindrical shells of reference
P. which are further xeducible to the equations of homo-

geneous shells of reference 12.
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Modification and Simplification of Equations

As in reference 5. a second system of ecmations of
somewhat better accuracy may be derived by assuming, in-
stead of Egs. (3),

v - L. v - V:* (,-h,/z )rA,

The results are similar tc Eq-- (5); (61: (7), (11). and
(12). In fact, they are obtainable from these equations
by replacing hl by hl + b-)/2 in the last two of Eqs. (5)
(except the hl in 2h1

3/3, in the last twj of Eqs. (6) and
those of Eqs. (7) (except the hi in the linits of the inte-

gration), and in t'. expressions of mx. ,3, N's2, Ns3,
Nxs2. V':s3° lsx2, 's3. in -equations (12). 1With the

modifications ..ade, we chall designate the newly obtaine.I
s.econd system of equations as

Eqs. (5), (6), (7), (li), '12) modified
(5'), (6'). (7'), (11*),,12')

As may be seen from Eqs. (11) and (12), by having
taken into consideration the rotations u),X and us, in the
core, not only the membrane forces Nxl, N.I, Nxs70 and

Nsxl themselves are 9ffected, but also the,. Are augmented
by the transverse shear forces QXl and Qsl. Conversely,

the transverse shear forces are also augmented by the mem-
brane forces. Since for relatively low frequencies the

motion of the shell is predominantly transverse in nature,

the contribution of Oxl and s to the membrane forces
should be of less importance than the contribution of Nxl,
N l, Nxsl, and Nsxl to the transverse shear forces. The

contribution of x1 and Oslto the moments is also small,
for, according to Eqs. (11). they are multiplied by both

a small angle of rotation Wxl or wsl and a small factor
h1

2/3a. As a simplification, the contributionc of Ol

and 2.1 to the membrane forces and moments are neglected



in Eqs. (11). If we are primarily interested in low fre-

quencies for which the motion is predominently transverse,

the inertia terms involving Z, V. *' and become of much

less importance than the transverse inertia term involving
w and may also be neglected. Incorporating both types of
simplifications, we shall designate the results obtained

from the first system of equations by

Eqs. (5), (6), (7), (11). (12) simplified
(5a), (6a), (7a), (lla), (12a)

The second system of equations may similarly be simplified

and denoted by

Egs. (5'). (6'). (7" 1. (11'). (12') simplified

(5a'), (6a'), ',7.'), '!..a'), (12a')

For sandwich shells with soft core, rr,.- membrane forces
and moments in the core may further be neg''cted, that is,

we may put

N, . " I IV,,,- 0 (13)

Contrary to this, we have in the case of hoa.ogeneous shells,

for which h 2 - 0,

NXi IV X L /x. 0 (14)

In the axially synmetrical case with zero surface tractions,

Eqs. (5a') become

J , * 4x.A) f- -,) W

J L +( A, M , 1 CL, 1,

AI j > I'
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V ere 2 h ,+

, J. %A')'

eiN i-prae in3  2&. . (1 in the- nex .L"' on nwhich

ri 0- 34,Ii~I #Z~# - (6

)16

with primes denoting differentiation with respect to x.
The final simplifications given by Eqs. 2 and (M') will
be kt-, rporated in Eqs. (15) in the next s':ctions in Wnich
axially symmefzical vibrations ),f sandwicn and homogeneot-

cylindrical shells are discussed.
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Nonlinear Vibrations or Homogeneous and
ScW&,,ieh% CV1V r' Cal SbIA18

It should be emphasized at this point that each of

the above systems of shell ecmations is essentially the

result of putting to zero the coefficients of the varia-

tions of the displacements in the integrands of the now

simplified variational equation of motion, simplified in

that it no longer contains the integration with respect

to z. For those of the shell equations that can be solved

and satistied exactly in a given problem, the correspond-
ing --_fficients will simply drop out of the simplified

variational equ :tion of motion. on the other hand, for

those shell equations that canaot be solved exactly, the
corresponding coefficients will remain. Svbsequent vari-

ational approximation may then be performe,, which makes

the latter ecuations eventually also satisfied, at least

approximately in the variational sense. This procedure

will now be demonstrated bN- the following discussion of

axially symmetrical vibratio" f-f hcAiogeneco. and sandwich

cylindrical shells with inovable hinged edies.

The hbmogeneous cylindrical shell will be considered

first, for which Eqs. (14) to(16) yield

~(l)

-41 ) IAI' . v,' T , , - e

where the only rotation component involved is now

S-- ( '- )~"

!!!!! ! ! 11 I I I-)"2 I. I / I ' |
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The subscript 1 has been dropped from all notations in

Eqs. (17) to (19). The shear modulus 4 is now for an

istropic material, and the shear coefticient has the

usual value of r2/12 r141, although it may als,' be as-

signed the value of infinity for the purpose of suppress-

ing the transverse shear effect.

From Eqs. (17) and (18) u" is first eliminated. Into

the result are substituted

VV" WfAtA) 2 It, y t) " VS (20)

which satisfy the conditions of zero deflection and

moment at the hinged edaps x = 0.k. It in then Zound

that

(21)

Tn Eqs. (20) ad (21) w have.,' - nrh/j , with n = 1,2,3,

designating the number ot nalf-waves in t".e l-n-th 0 of the

shell, and i(t) is the unknown time function. u is next

solved from Eq. (17). into which w and V a±c substituted.

Together with the use of the boundary conditions of u = 0

at the immovable edges x = 0, , we finn

A

where

Eqs. (20) to (22) thus satisfy exactly all the boundary

conditions and the governing Eqs. (17) and (IS). However,

it is easily verified that they do not satisfy the remain-

ing governing Eq. (l). Since the left side of Eq. (19) is

the coefficient of 6W in the double integral (actually re-

duced to a single integral of x in the present plane-strain

problem) in the variational equation of motion, and :since

we now have

I: II I!'( r r



according to Egs. (20) we may carry out explicitly the

integration with respect to x over the length of the
shell and put the coefficient of 8(Wr) equal to zero.

Thus, there results

-G f- 4 + 7C 0(23)

where

LA.

'V

This in essence has completed a second vari-tional approxi-

mation, with respect to the second and last rfmaininq

space coordinate x, although the approximotion applies
to only one of the governing differential e,T'ations. If
needed, the procedure could have also been -pplied to any
other or all of the differential equations aad boundary

c-nditions.

To determine the nonlinear frequency it is convenient

to carry out a last variational approximation with recpect

to time, in connection with Eq. (23). The left side of the

ecuation is essentially the coefficient of 5(W ) in the
variational equation of motion, which has now been much

simplified, since the time integral is the only one re-
maining. The integration with respect to time may be

carried out explicitly by first assuming say, T - sins-t,
and by selecting to - 0 and ti - 2-/w as the limits of

integration. The coefficient of 6W is finally put equal
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to zero to yield

3 -"" 
YI-

It is interesting to note that the approximate nonlinear

frequency is independent of a2"

in a similar manner we may investigate the vibration

of the sandwich cylindrical shell, to which Eqs. (15) and

(16) together with the simplifications in Eqs. (13) are

applicable. The equations of motion in terms of the dis-.

placements are of the final form

2 .t, ,(,t (V ' , "

225

2 t~h~~ &k; "

The shear coefficient >, may be taken ecual 'o I for

ordinary sandwich shells F15, ,q], although 1c may also

be set equal to infinity for the purpose of suppressing

the transverse shear effect.

Eqs. (25) are entirely similar to Eqs. (17) to (19)

and the same method of solution is applicable. The results

are

( .. . . --_ > - )X,

XVVT b
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t - - -A /I)( fq r1 K . , 4 .
iNt~ t VV C3 C

J-

T'he nonlinear frc&-er, y is again given by 'he approximate

expression

6.J te

which is now

A, - , ,'L T,  , 2 ' ,. Y (6

Eq. (26) is reducible to the result for tt- nonlinear

frequency of sandwich plates r9] by letting a equal to

infinity, and to the result for relatively low linear

frequencies of sandwich cylindrical shells r8l, bydropping the nonlinear term (3/4) W/2h e rx.

The frequencies of nonlinear symmetrical vibrations

of homoeneous and sandwich cylindrical shells have thus

been determined solely on the basis of the variation e-

quaton of motion, by carrying out variational approxi-

mations wherever needed. Further refinements may be rade

in the analysis and the discussion may readily be extended

to non-symmetrical vibrations and to other types of

boundary conditions, but the relatively simple cases pre-

sented here are clearly sufficient for illustrating the
variatinnal procedure that is being proposed.



25

Discussion of Results

The results in Eas. (24) and (26) give the frecniencies

for the lowest family of axially syumetrical modes of vi-

bration of the cylindrical shells, which are predominate-

ly transverse in nature. The effect of thickness shear
deformation is associated with the X - or j- terms, and

its importance is seen to vary directly with A2. Since

putting X or x1 equal to infinity is equivalent to the

suppression of the shear effect, Eqs. (24) and (26) show
that, disregarding nonlinear and curvature effects at

this moment, the shear effect by itself becomes negligible

if

^ '< - [. (homogeneous)

or

(sandwich)

These conditinns apply to plates as well s shells. Since
r2rh for ordinary sandwic'. structures is 4 sually of ',*

order of between 10 and V)C. t e shear ektect is much more
important for sandwich than for homogenenm:q plates and
shells. In general, the shear effect should be considered

for sandwich structures [161.
The w2/h 2 -.. and h2 /a 2 - terms in tqs. (24) and (26)

reflect, respectively, the nonlinear and vurvature effects,
which are conrletely uncoupled from each r.,_iter. Terns

associated with the coupling between the two effects would
be present in the equations. if we had employed more exact

expressions of the rotation cnmponents. Since it is the

approximite epressions of the rotation components in Eqs.

(4) which have been used 4nd which are the same as those

for plates, the nolinear terms in Eqs. (2A) and (26) are
also essentially the same as those for plates. In the case
of sandwich plates, the nonlinear effect was discussed be-

fore in cference 9, where it was found that the nonlinear

effect would overshadow the shear effect if

PI+h (27)
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